The VTLISFG motif in the BH1 domain plays a significant role in regulating the degradation of Mcl-1☆
نویسندگان
چکیده
Mcl-1 is a member of the Bcl-2 family protein; its degradation is required for the initiation of apoptosis. The mechanism, however, is not yet clearly known. Previously, it was reported that Mcl-1 is degraded through the ubiquitination-mediated pathway and the PEST domain is the motif responsible for promoting this degradation. We found evidence that this may not be true. We generated several Mcl-1 deletion mutants and examined their effects on protein stability. Deletion of the PEST domain did not prevent the degradation of Mcl-1 during apoptosis. The BH1 domain, but not the PEST, BH3 or BH2 domain, exhibited a short half-life. A peptide named "F3" (VTLISFG) in the C-terminus of the BH1 domain appears to be critical for the rapid turnover of Mcl-1. Deletion of F3 from GFP-Mcl-1-ΔPEST retarded the degradation of this mutant. F3 appeared to be the minimum functional sequence of the degradation motif, since deletion of a single residue was sufficient to abrogate its short half-life. Fusion of F3 with p32 resulted in the degradation of p32 during UV-induced apoptosis, while wild type p32 was not affected. Taken together, these findings suggest that F3 (VTLISFG), instead of PEST, is the major motif responsible for the degradation of Mcl-1 during apoptosis.
منابع مشابه
Myeloid Cell Leukemia-1 Gene Expression and Clinicopathological Features in Myelodysplastic Syndrome
Background and Aims: Myeloid cell leukemia-1 (Mcl-1) plays a pivotal role in the survival of hematologic and solid tumors, and is known as a substantial oncogene. Studies have demonstrated the altered expression of Mcl-1 has been linked to malignancy development and poor prognosis. In this research, we have studied the expression of Mcl-1 mRNA in myelodysplastic syndrome (MDS) patients and det...
متن کاملCloning and molecular characterization of TaERF6, a gene encoding a bread wheat ethylene response factor
Ethylene response factor proteins are important for regulating gene expression under different stresses. Different isoforms for ERF have previously isolated from bread wheat (Triticum aestivum L.) and related genera and called from TaERF1 to TaERF5. We isolated, cloned and molecular characterized a novel one based on TdERF1, an isoform in durum wheat (Tri...
متن کاملInterplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملIn Silico Characterization of Proteins Containing ARID-PHD Domain and Its Expression in Aeluropus littoralis Halophyte
Abiotic stresses are the most important factors that reduce the yield of crops. In this case, Bioinformatics analysis plays an important role to study genes, and their relatedness as well as prediction their function in response to abiotic stresses. Among all domains, ARID-PHD domain has been identified in plants and animals and has a very significant role in growth regulation, cell cycle, and ...
متن کاملMCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain.
MCL-1 (myeloid cell leukemia-1) is an antiapoptotic BCL-2 family protein discovered as an early induction gene during myeloblastic leukemia cell differentiation. This survival protein has the BCL-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region. We identified a short splicing variant of the MCL-1 mRNA in the human placenta encoding a protein, termed MCL-1 short (MCL-1S)...
متن کامل